
ФГБОУ ВО ОрГМУ Минздрава России Кафедра Биологии

Методы изучения генетики человека

Профессор кафедры биологии, д.б.н. Соловых Галина Николаевна

A.C. Серебровский (1892–1948)

Генетический анализ

Основным методом генетики является генетический анализ, основателем которого является известный отечественный ученый А.С. Серебровский, автор книги «Генетический анализ» (издана только в 1970 г.), которая не потеряла актуальности и сегодня.

Генетический анализ – комплекс методов исследования генотипа и фенотипа.

Особенностью генетического анализа является то, что изучение генов осуществляется через контролируемые ими признаки. В связи с этим предметом генетического анализа является фенотип организма и его отдельные признаки.

Особенности человека

Преимущества

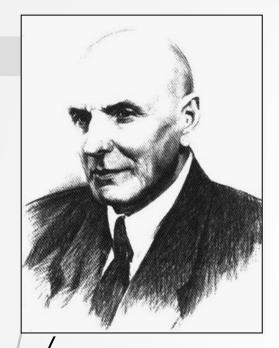
- Разнообразие семей
- > Способность воспринимать
 - и передавать информацию
- > Хорошая изученность человека
- Большое количество методов изучения генетики человека

Объективные трудности

- Биологические
- > Социально этические

Биологические трудности

- Немногочисленное потомство (моноплоидная беременность, ограниченный фертильный возраст)
- Медленная смена поколений (позднее половое созревание, продолжительная беременность)
- Сложность кариотипа (большое число хромосом, разные взаимодействия генов, разная пенетрантность генов)
- Высокая степень гетерозиготности, фенотипический полиморфизм


Социально-этические трудности

- > Невозможность экспериментальных браков
- Невозможность создания одинаковых условий (образ жизни, питание и т.д.)
- Немногочисленное потомство (планирование семьи)
- Медленная смена поколений (дети после 30 лет)
- Отсутствие точной регистрации наследственных признаков

- Однако сегодня в результате научных исследований и практики накоплены знания, позволившие решить ряд важнейших задач генетики человека
- Основной задачей медицинской генетики является выявление и профилактика наследственных болезней.

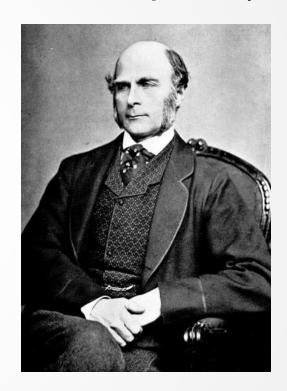
Генетика человека - антропогенетика

- **раздел фундаментальной генетики и медицины**, который:
- изучает закономерности наследования и изменчивости
 признаков у людей (в том числе патологических)
- изучает факторы, влияющие на распределение аллельных
 (мутантных) генов в человеческих популяциях
- у изучает связи между генами и определенными видами патологии человека (проблема генетических маркеров)
- ▶ изучает вклад генетических и негенетических факторов в процессы индивидуального развития и жизнедеятельности человека, включая чисто человеческие аспекты (интеллект, социабильность, трудовая деятельность), в показатели здоровья населения, пути совершенствования генодиагностики, генотерапии и генопрофилактики.

С.Н. Давиденков (1880-1961)

С.Н. Давиденков (1880-1961) один из основоположников медицинской генетики выдающийся советский невролог, начинавший свою плодотворную работу в двадцатых годах на Украине.

Он впервые применил идеи генетики в клинике, дал анализ ряда наследственных заболеваний, часть из которых была описана им впервые.


Важной заслугой С.Н. Давиденкова является разработка методов медико-генетического консультирования и его первое практическое применение в нашей стране.

Основные методы изучения генетики человека

- Генеалогический
- Цитогенетический
- Биохимический
- Близнецовый
- Популяционно-статистический
- Дерматоглифический
- Генетики соматических клеток
- ДНК диагностики

Сэр Фрэнсис Гальтон (кузен Ч.Дарвина) (Francis Galton; 16 февраля 1822 — 17 января 1911)

- Занимался вопросами наследственности, биометрией, дерматоглификой, статистикой и тестированием;
- первым начал изучение близнецов;
- > Создал евгенику.

Генеалогический метод позволяет установить

- является ли данный признак наследственным (по проявлению его у родственников);
- тип и характер наследования (доминантный или рецессивный, аутосомный или сцепленный с полом);
- зиготность лиц родословной (гомо- или гетерозиготы);
- > пенетрантность гена (частота его проявления);
- вероятность рождения ребенка с наследственной патологией (генетический риск).

ЭТАПЫ СОСТАВЛЕНИЯ РОДОСЛОВНЫХ

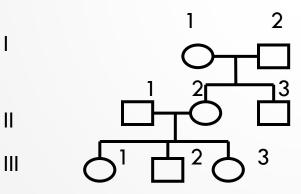
> 1.Сбор сведений

> 2.Графическое составление родословной

> 3.Генеалогический анализ

> 4.3аключение

Пробандом называется лицо, родословную которого необходимо составить.


Им может быть больной или здоровый человек – носитель какого-либо признака или лицо, обратившееся за ответом к врачу-генетику на консультацию.

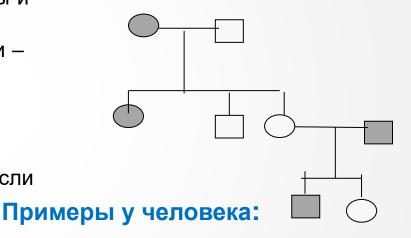
Братья и сестры пробанда называются сибсами.

Обычно родословная составляется по одному или нескольким признакам.

Принципы метода

- родословную начинают строить с пробанда лица, с которого начинается исследование семьи;
- > каждое поколение нумеруется римскими цифрами слева;
- особи одного поколения располагаются на горизонтальной линии и нумеруются арабскими цифрами;

Символы, используемые при составлении родословных

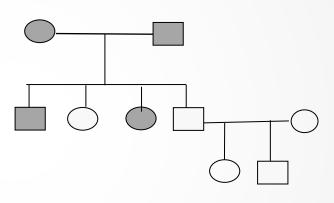


Различают 6 основных типов наследования:

- *Аутосомно-доминантный тип (AD) наследования
- *Аутосомно-рецессивный тип (AR) наследования
- * Голандрический тип (Y) наследования
- *X-сцепленный доминантный (XD)
- *X-сцепленный рецессивный (XR)
- *Митохондриальное (цитоплазматическое) наследование

Аутосомно-доминантный тип (AD) наследования характеризуется следующими признаками:

- 1) болеют в равной степени мужчины и женщины;
- (2) больные есть в каждом поколении наследование «по вертикали».
- 3) вероятность наследования 100% (если хотя бы один родитель гомозиготен), 75% (если оба родителя гетерозиготны) и 50% (если один родитель гетерозиготен).


Синдром Марфана

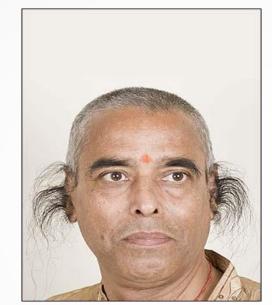
Ахондроплазия

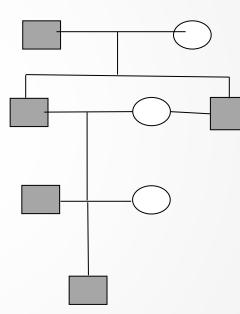
Гиперхолестеринемия

Аутосомно-рецессивный (AR) тип наследования

- 1. Характерен пропуск поколений
- 2. Равно мужчины и женщины
- 3. «По горизонтали»
- 4. Вероятность у детей 25%, если у родителей признак не проявился

Примеры у человека:

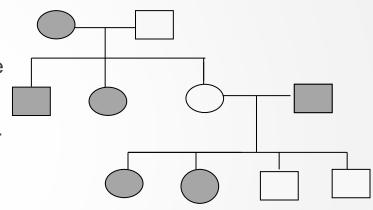

Фенилкетонурия


Муковисцидоз

Адрено-генитальный синдром

Голандрический тип (Ү) наследования

Передается по мужской линии без пропуска поколений



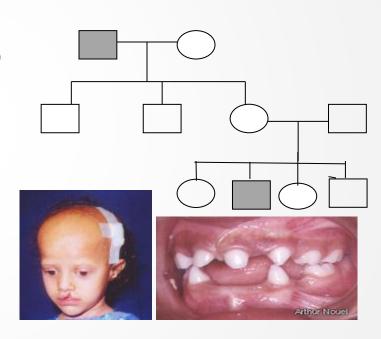
Пример у человека:

Гипертрихоз ушной раковины

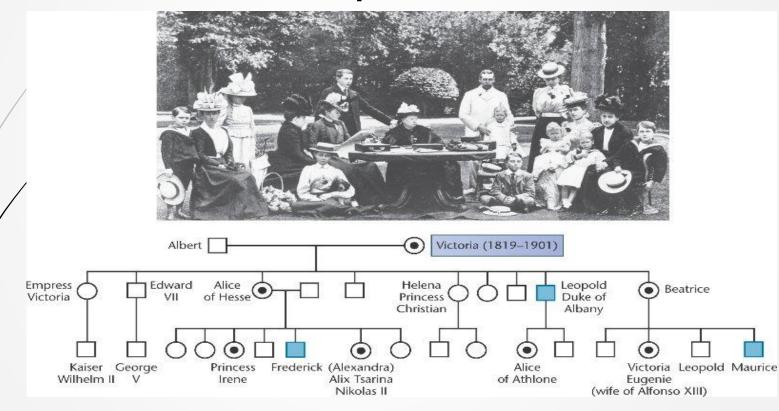
X-сцепленный доминантный (XD)

- Без пропуска поколений по вертикали
- > Женщины поражены в 2 раза чаще
- От отца передается всем дочерям;от матери 50% сыновей и дочерей.

Примеры у человека:


Рахит, резистентный к витамину Д Коричневая эмаль зубов

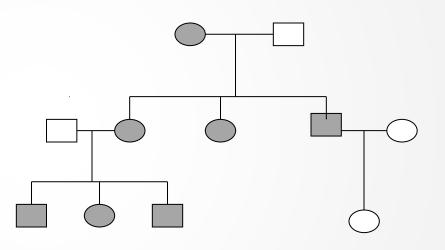
X-сцепленный рецессивный (XR)


- Передается от деда через матьносительницу к внуку
- У мужчин проявляется значительно чаще, чем у женщин

Примеры у человека:

Гемофилия Дальтонизм Мышечная дистрофия Эктодермальная дисплазия

Х-хромосомой


Митохондриальное (цитоплазматическое) наследование

Передается по материнской линии

Пример:

митохондриальная миопатия

У растений также гены хлоропластов.

Близнецовый метод –

один из наиболее ранних методов изучения генетики человека был предложен в 1876 году
Ф. Гальтоном.

Среди близнецов выделяют две группы:

двойни встречаются 1/84 новорожденных, 1/3 из них — монозиготные (однояйцовые — близнецы), остальные — дизиготные (двуяйцовые — двойняшки).

однояйцовые (монозиготные)

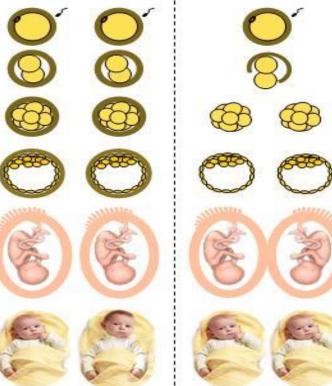
и двуяйцовые (дизиготные).

Монозиготные близнецы (МЗ)

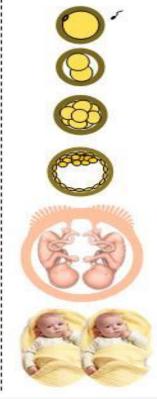
- Развиваются из одной яйцеклетки,
 оплодотворенной одним сперматозоидом
- Всегда одного пола
- > Одинаковая группа крови

Дизиготные близнецы (ДЗ)

- Развиваются из двух или более одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток.
- Они имеют различные генотипы и могут быть как одного, так и разного пола


Сиамские близнецы

это однояйцевые близнецы, которые не полностью разделились в эмбриональном периоде развития и имеют общие части тела или внутренние органы.


Обычно оплодотворенная яйцеклетка делится на шестой день после зачатия.

ФОРМИРОВАНИЕ БЛИЗНЕЦОВ

Дизиготных

Монозиготных

Разновидности близнецового метода

- Классический близнецовый метод оценивается уровень внутрипарного сходства близнецов.
- ▶ Метод контрольного близнеца сравнивается влияние воздействия различных факторов среды на одного и того же человека.
- **Лонгитюдное близнецовое исследование** направлен на изучение развития интелекта.
- ▶ Метод близнецовых семей изучается влияние материнского эффекта, а также наследственные причины ряда заболеваний.
- ▶ Исследование одиночных близнецов сопоставляются особенности развития одиночнорожденных детей и близнеца, чей партнер умер при рождении (пленительное развитие).
- Сопоставление близнецов с неблизнецами.
- ▶ Метод разлученных близнецов сравнивается внутрипарное сходство близнецов, разлученных в раннем возрасте и никогда не встречавшихся после.
- ▶ Метод частично разлученных близнецов сравнивается внутрипарное сходство МЗ и ДЗ близнецов, живущих врозь какое-то время.

Близнецовый метод используется в генетике человека для того, чтобы оценить:

- наследуемость признака;
- пенетрантность и экспрессивность гена;
- степень влияния наследственности и среды на развитие какого-нибудь нормального или патологического признака;
- > эффективность использования лекарств;
- > эффективность методов обучения и воспитания;
- ➤ коэффициент IQ.

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: шизофрении, эпилепсии, сахарному диабету и другим.

Этапы близнецового метода:

- > для наблюдения подбирают пары близнецов одного пола;
- > определяют зиготность близнецов.
- № МЗ развиваются из одной зиготы, имеют 100% одинаковый генотип (одинаковую группу крови, пол, рисунки кожи и т. д.), 100% приживаемость трансплантанта.
- ▶ДЗ развиваются из разных зигот и похожи как родные братья и сёстры.
- определяют % сходства в группах моно- и дизиготных близнецов(конкордантность).
- много патологических признаков человека являются мультифакториальными.

Конкордантность - процент сходства группы близнецов по изучаемому признаку

Дискордантность – процент различия по изучаемому признаку

Конкордантность — наличие определённого признака у обоих близнецов, или среди группы людей. Конкордантностью также называется вероятность того, что оба близнеца будут иметь определённый признак, при условии, что его имеет один из них.

Таблица конкордантности

	Показатели конкордантности у близнецов	
Заболевания	Монозиготные близнецы	Дизиготные близнецы
Сахарный диабет	65	18
Эпилепсия	67	3
Расщелина неба	33	5
Ревматизм	47	17
Корь	98	94
Туберкулёз	67	23

Дискордантность

Дискордантность - несходство близнецов в отношении анализируемого признака, т.е. при условии, что его имеет только один из них

Таблица дискордантности

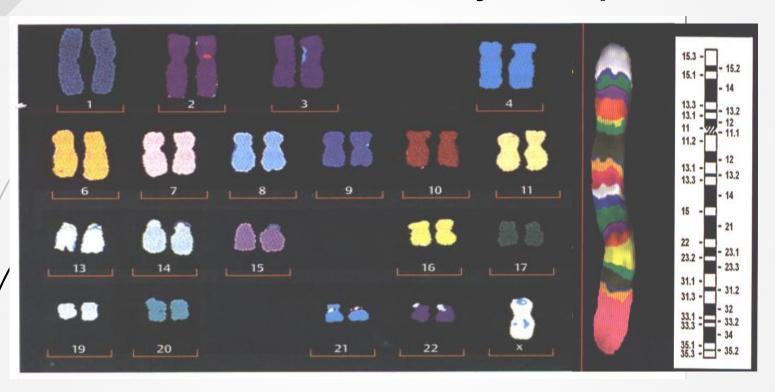
Признаки, контролируемые небольшим числом генов	Вероятность появления различий,%		
	Монозиготные близнецы	Дизиготные близнецы	
Цвет глаз	0,5	72	
Форма ушей	2,0	80	
/ Цвет волос	3,0	77	
Цвет кожи	0,0	55	
Форма волос	0,0	21	
Форма губ	0,0	35	

Близнецовый метод изучает соотносительную роль генотипа и среды путем сравнения близнецов

$$\mathbf{H} = \frac{\mathbf{K}_{MB} - \mathbf{K}_{ДB}}{100\% - \mathbf{K}_{ДB}}$$

Н – показатель наследуемости признака

К_{мь} – показатель конкордантности в %% у монозиготных близнецов


К_{дБ} – показатель конкордантности в %% у дизиготных близнецов

E – коэффициент среды, E=100-H

Определяется:

- Наследуемость: Н 1-0,7 признаки наследственные,
 - Н 0,4-0,6 мультифакториальные,
 - Н 0-0,3 зависят от среды.
- Пенетрантность аллеля:
 - > Оценка эффективности действия препаратов, обучения.
- > Болезни с наследственной предрасположенностью:
 - Для проявления необходимо кроме наследственных факторов, воздействие специфических факторов среды (Алкоголизм, шизофрения, артериальная гипертензия)
- **моногенные болезни** с варьирующей экспрессивностью галактоземия, мигрень.
- полигенные мультифакториальные болезни делят на:
- врожденные пороки развития (гидроцефалия); психические и нервные болезни (шизофрения, эпилепсия);соматические болезни среднего возраста (псориаз, бронхиальная астма).

Цитогенетические методы изучают хромосомы

Цитогенетика


Это область генетики, изучающая цитологические основы наследственности и изменчивости, структуру и функции хромосом с использованием цитологических методов для выявления геномных и хромосомных мутаций

Возможности метода:

- У Изучение кариотипа (особенность строения и число хромосом)
- Определение генетического пола организма
- > Оценка мутагенеза

Термин цитогенетика введен в 1903 г. В.Саттоном.

Copyright © 2006 Nature Publishing Group Nature Reviews | Genetics

Альберт Леван (1905-1998 гг.)

- Цитогенетический метод исследования генетики человека, его развитие и становление связаны с такими учеными, как Альберт Леван и Джо Хин Тио. Они в 1956 году первыми установили точное количество хромосом у людей. Их оказалось не 48, как думали ранее, а 46.
- Именно это и положило начало исследованию мейотических и митотических хромосом человека.

Джо Хин Тио (1919-2001 гг.)

Цитогенетические методы

Д. Лежен 1926-1994

- В 1959 г. французские ученые Д. Лежен,
 Р.Тюрпен и М. Готье, используя цитогенетические методы, установили хромосомную природу болезни Дауна.
- В последующие годы были описаны многие другие хромосомные синдромы, часто встречающиеся у человека.

Р.Тюрпен 1895-1988

Цитогенетические методы

КАРИОТИП – характеристика вида, в которой учтены число, величина и морфологические особенности хромосом

КАРИОТИП – ЭТО "ЛИЦО" ВИДА

Этапы цитогенетического метода:

- культивирование клеток человека на питательных средах;
- **стимуляция митозов** фитогемагглютинином (ФГА);
- добавление колхицина (разрушает нити веретена деления) для остановки митоза на стадии метафазы;
- **обработка клеток** гипотоническим раствором, вследствие чего хромосомы рассыпаются и лежат свободно;
- окрашивание хромосом, используют различные методы(Q-окраска, G-окраска, дифференциальная окраска сестринских хроматид);
- изучение под микроскопом и фотографирование.
- Специальные методы:
- > Гибридизация in situ: варианты FISH, ДНК-зонды,
- Метод CGH (Comparative Genome Hybridization)
- Молекулярная диагностика хромосомных болезней

Методы приготовления хромосомных препаратов

Прямой метод

(костный мозг, лимфатические узлы, любые ткани эмбриона на ранних стадиях развития и хорион/плацента до 20-й недели беременности)

Непрямой метод

(любая ткань, обычно это лимфоциты крови)

1. Культивирование лимфоцитов

Эта процедура необходима для стимулирования их деления. Это связано с тем, что возможности цитогенетического метода напрямую зависят от количества клеток, которые находятся на стадии метафазы, в тот момент когда хромосомы собраны наиболее компактно. Длительность культивирования, как правило, 72 часа. Увеличению числа метафазных клеток способствует введение в завершении процесса колхицина. Он приостанавливает на стадии метафазы деление, разрушает его веретено и ловышает конденсацию хромосом. Затем клетки перемещаются в гипотонический раствор. Он провоцирует разрыв ядерной оболочки и свободное движение хромосом в цитоплазме

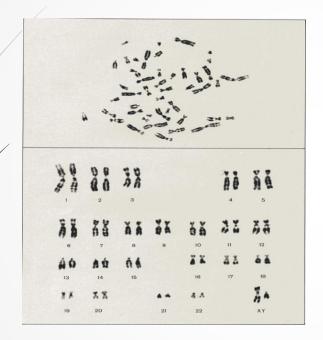
2. Окрашивание

> На этой стадии процесса клетки фиксируются с помощью уксусной к-ты и этанола в пропорции 1:3. Далее суспензию помещают на предметные стекла и сушат. В соответствии с целями анализа применяются разные приемы дифференциального окрашивания. Длительность процедуры – несколько минут. Окрашивание приводит к возникновению рисунка с поперечной исчерченностью, специфичного для каждой из хромосом

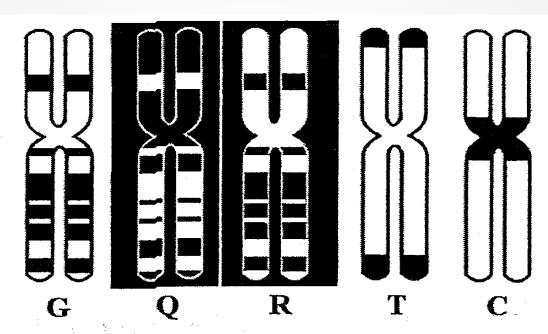
3. Микроскопический анализ

Самым трудоемким процессом считается световое микроскопирование. Для его выполнения необходима высокая квалификация специалиста. Чтобы выявить хромосомные аномалии, следует проанализировать не меньше 30-ти пластинок. Весьма результативными считаются компьютерные методы исследования.

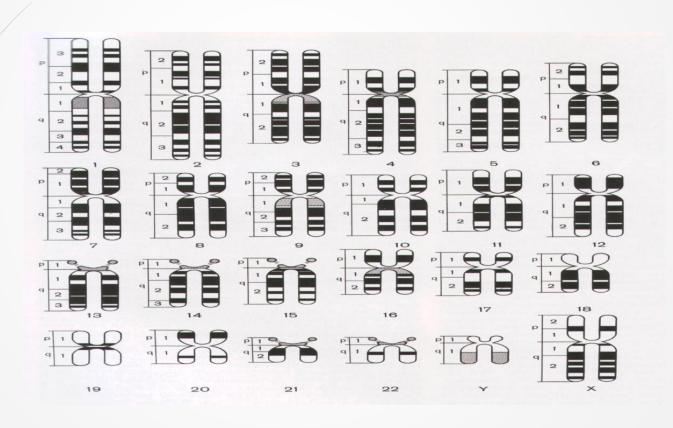
Материально-техническое оснащение для кариотипирования

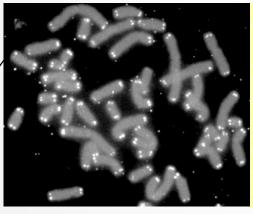

Цитогенетический метод изучения кариотипа

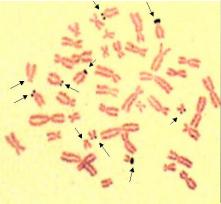
▶ В 1960 г. в г. Денвере (США) была разработана первая Международная классификация хромосом человека. В ее основу легли размеры хромосом и положение первичной перетяжки — центромеры. Все хромосомы по форме разделены на метацентрические, субметацентрические и акроцентрические и подразделены на 7 групп, обозначенных латинскими буквами А, В, С, D, Е, F и G. Каждая пара хромосом была наделена порядковым номером от 1 до 22, выделены отдельно и поименованы латинскими буквами — X и Y половые хромосомы. При выполнении метода кариотипирования используют различные красители, что позволяет выявить различные дефекты хромосом.

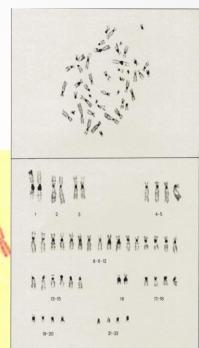

Нормальный кариотип человека (однородная окраска- рутинная)

Нормальный кариотип человека (G-окраска)



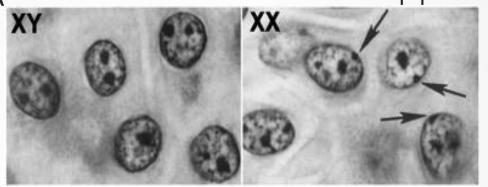

Чередование бэндов в хромосоме X, полученное разными методами дифференциальной окраски.


Идиограмма- схематичное изображение дифференциальной исчерченности хромосом



Селективное окрашивание

конститутивный гетерохроматин, активные ядрышко-образующие районы, центромерные и теломерные.



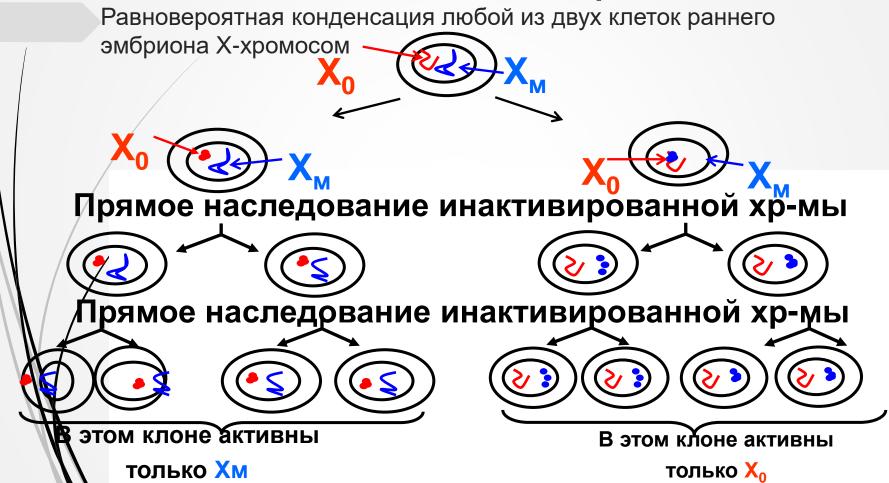
Показания к проведению метода:

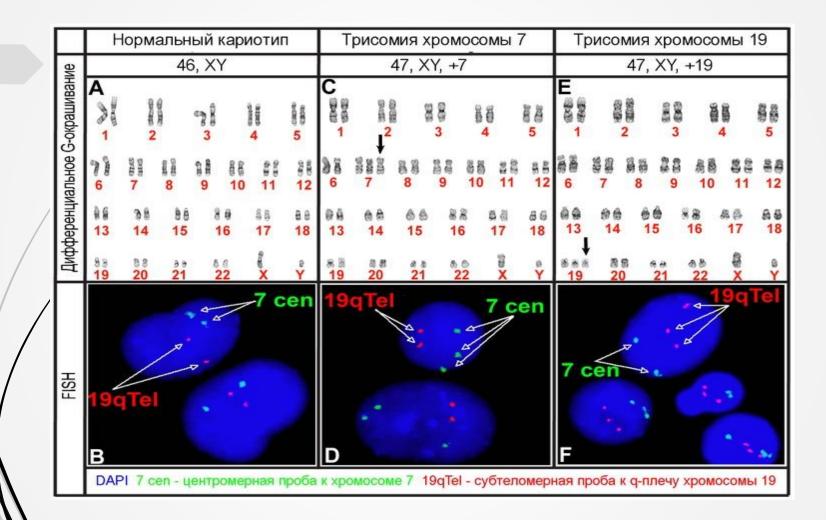
- подозрения на хромосомную болезнь;
- множественные врожденные пороки развития;
- несколько неблагополучных исходов беременности (спонтанные аборты, мертворождения);
- стойкое первичное бесплодие у мужчин и у женщин при исключении гинекологической и урологической патологии;
- Лейкозы (дифференциальная диагностика, оценка эффективности лечения и прогноз)
- пренатальная диагностика посредством хорионбиопсии амниоцентеза и кордоцентеза;
- оценка мутагенных воздействий.

Экспресс-диагностика определения полового Xхроматина (позволяет выявить в клетках интерфазного ядра)

Половой хроматин образуется за счет одной иноктивированной Х-хромосомы (тельце Барра).

Равная вероятность конденсации любой из двух X-хромосом.


Х-хроматин (тельце Барра) – это спирализованная, генетически неактивная X-хромосома.


Количество телец Барра в ядрах соматических клеток здоровой женщины в кариотипе – **1**,

при синдроме Шерешевского –Тернера - 0

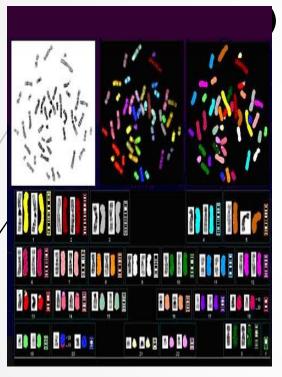
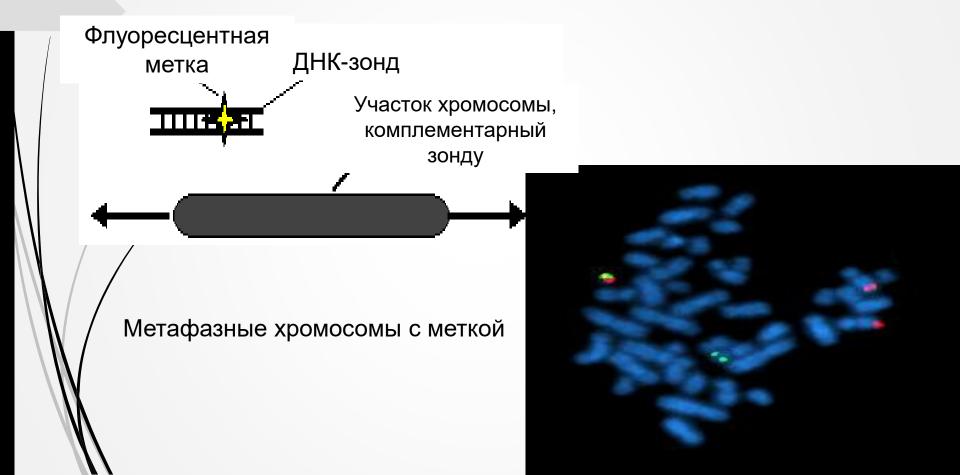

У мужчин в норме - 0.при синдроме Кляйнфельтера - 1

Схема инактивации Х-хромосомы



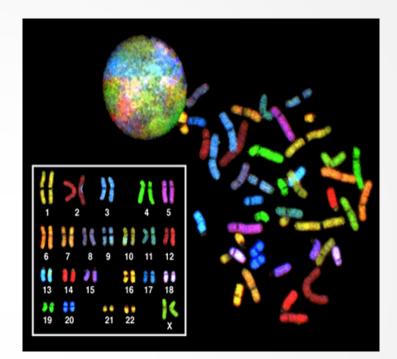
Молекулярно-цитогенетичские методы Метод флюоресцентной гибридизации

- **(FLORESCE) СЕОВНЬЯ ЦАНУОТ СИЗАТІОЛЯ** ТСЯ ОСОБЕННОСТИ НУКЛЕОТИДНОГО СОСТАВА КОНКРЕТНОЙ ХРОМОСОМЫ ИЛИ ЕЕ ОТДЕЛЬНОГО УЧАСТКА.
- Метод основан на гибридизации известной по нуклеотидному составу ДНК-пробы с участком тестируемой хромосомы и с последующим выявлением результата гибридизации по метке – флуоресцентному сигналу в ожидаемом месте.
- Когда следует использовать FISH?
- При определении количества отдельных хромосом в клетке, когда кариотипирование невозможно из-за малого количества материала
- При определении несбалансированных структурных перестроек

Картирование FISH-методом

Недостатки

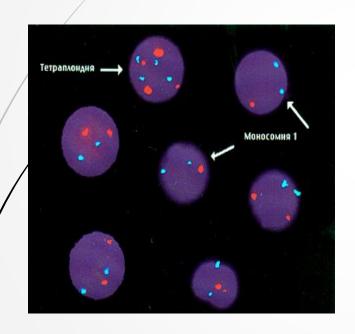
FISH-метода

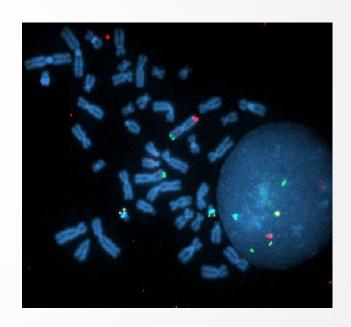

- > Дорогостоящий
- Флуоресцентные красители быстро "выцветают"
- Для анализа результатов необходим высококачественный флуоресцентный микроскоп

Преимущества

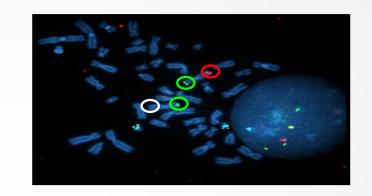
FISH-метода

- > Достоверный
- высокая разрешающая способность
- Возможность исследования генетического материала в интерфазных ядрах
- получение объективных результатов по принципу "да/нет" это количественный метод
- относительно простая интерпретация результатов

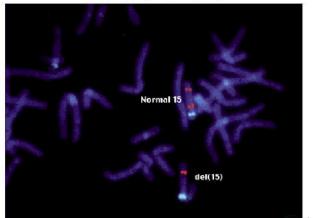

- Индивидуального окрашивания каждой хромосомы.
- (выявляют межхромосомные перестройки)
- Применение онкоцитогенетика

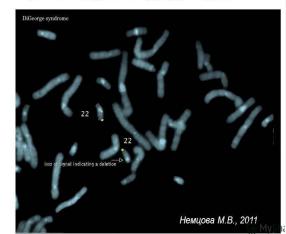


Мультицветная FISH и спектральное кариотипирование


Молекулярно-цитогенетические специальные методы:

ДНК-зонды, Метод СGH (Comparative Genome Hybridization) Метод флюоресцентной гибридизации in situ (FISH)

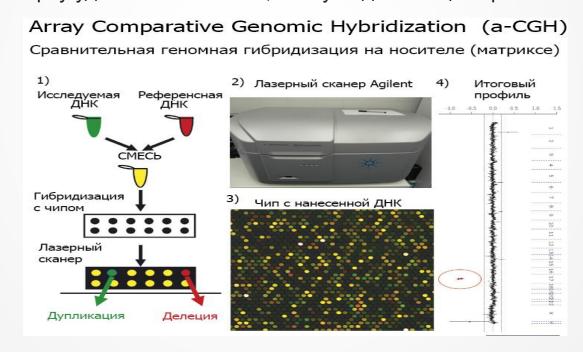



Кольцевые делеции Делеция 3q

FISH: определение микроделеции при синдромах Прадера-Вилли и Ангельмана

FISH: определение микроделеции при синдроме ДиДжорджи

Технология микробиочипов


Институт молекулярной биологии им.В.А.Энгельгардта РАН, Москва

Сравнительная геномная гибридизация (<u>aCGH</u>) Принцип метода

- Метод аСGH основан на сравнении двух образцов генетического материала: исследуемого и контрольного (контрольный образец (мужчины и женщины) заведомо известен и здоров).
- Эти образцы метятся зондами, они наносятся на микрочип с последовательностями олигонуклеотидов и охватывают длину всех хромосом. Покрытие составляет 60 тысяч точек на 1 хромосому.
- ➤ Соответствие интенсивности сигналов дает информацию о численности участка. Зеленый цвет «говорит» о потере участка, красный об увеличении численности участков.

Сканируются результаты компьютерной программой, и выдается результат в виде своеобразной диаграммы. Сам график выглядит в виде прямой линии, размеченной по парам хромосом, напротив пары хромосомы с дефектами – появляются разрыв прямой и пометка о нехватке или удвоении хромосомы в виде черты соответствующего цвета: вверху удвоенная зеленая, внизу недостающая красная.

Клиническое применение aCGH

- > Предимплантационная диагностика
- > Преднатальная диагностика
- > Диагностика при невынашивании беременности

Постнатальная диагностика при:

- ≽ ВПР
- > недифференцированной умственной отсталости
- моногенной патологии (мышечная дистрофия дистрофия Дюшена)
- > онкологической патологии
- > верификации результатов цитогенетических исследований

CGH – единственный на сегодня метод, позволяющий произвести точную количественную оценку микроделеционных и микродупликационных изменений одномоментно во всем геноме.

Бланк заключения

Федеральное государственное бюджетное учреждение

"Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова" Министерства здравоохранения Российской Федерации

Лаборатория молекулярно-генетических методов.

Преимплантационный генетический скрининг методом сравнительной геномной гибридизации.

Пациент: Иванова Елена Владимировна, 23.08.1976 г.р.

Врач: Петров А.А.

Эмбриолог: Сидорова М.А.

Маркировка предоставленного материала: a1, a4, a6, a7, a8, a9, a10, a11

Дата предоставления материала: 15 августа 2013 г.

ID слайда: 252192417777 Полученные результаты:

N	Чип	Эмбрион	Результат	Примечание
1	252192417777_1_1	a1	N,XY	
2	252192417777_1_2	a4	+21,XX	
3	252192417777_1_3	a6	Гетероплоидный	
4	252192417777_1_4	a7	+3,+5,-21,XX	
5	252192417777_2_1	8s	нд	
6	252192417777_2_2	a9	N, XX	del1, amp3
7	252192417777_2_3	a10	-19, XY	
8	252192417777_2_4	a11	N, XY	

Заключение: Для переноса рекомендованы эмбрионы номер 1 и 11.

Врач:

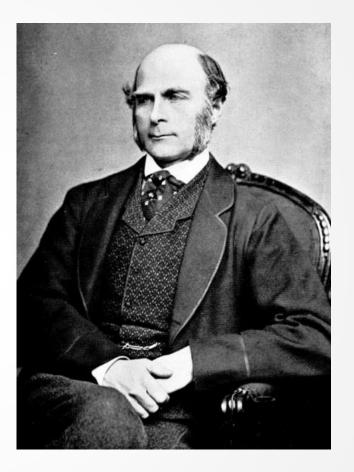
Екимов А.Н. 17 августа 2013 года.

Полученные результаты:

N	Чип	Эмбрион	Результат	Примечание
1	252192417777_1_1	a1	N,XY	
2	252192417777_1_2	a4	+21,XX	
3	252192417777_1_3	a6	Гетероплоидный	
4	252192417777_1_4	a7	+3,+5,-21,XX	
5	252192417777_2_1	a8	нд	
6	252192417777_2_2	a9	N, XX	del1, amp3
7	252192417777_2_3	a10	-19, XY	
8	252192417777_2_4	a11	N, XY	

Заключение: Для переноса рекомендованы эмбрионы номер 1 и 11.

Преимущества сравнительной геномной гибридизации:


- Сведен к минимуму человеческий фактор, весь анализ аСGН (сканирование, обработка результатов) проводится компьютерной программой. Врач-генетик только интерпретирует результаты.
- Успех программы **ЭКО** с СGH на микрочипах достигает 70%. Анализ позволяет выбрать один лучший эмбрион перед подсадкой и получить одноплодную беременность, минуя многоплодие при ЭКО.
- Возможность поэтапного проведения можно обследовать эмбрионы в несколько этапов. Сначала оплачивается биопсия всех полученных эмбрионов, но на анализ можно отправить партию состоящую, например, из 3-4 эмбрионов. Покрывается стоимость анализа для выбранных эмбрионов. Биопсийный материал для остальных подвергается заморозке и хранению. Если в результате обследования получены единицы без генетических аномалий делают подсадку. Если из партии все эмбрионы с патологией, нужно сделать анализ СGH для следующей партии.

Как и любой метод, CGH имеет свои недостатки

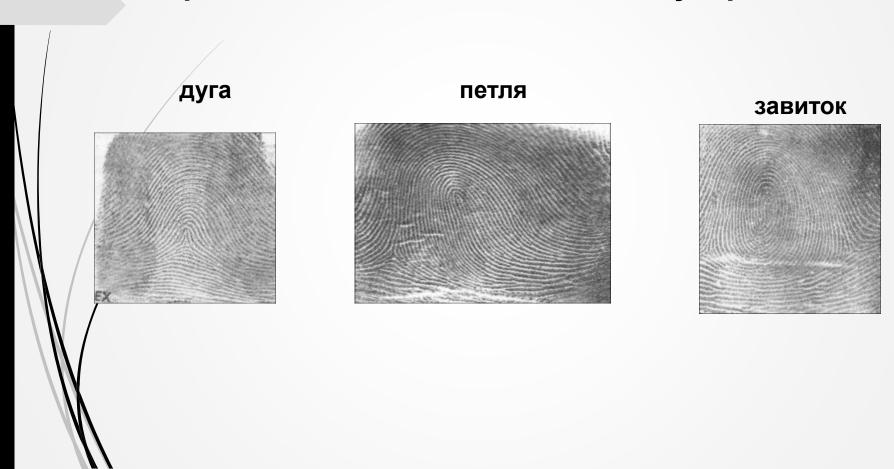
- Стоимость. Это дорогостоящий метод, как правило, в прайсах репродуктивных клиник указывают цену исследования 1 эмбриона, но возможна поэтапная оплата и постановка анализа.
- Занимает продолжительное время по сравнению с методом FISH.
- Имеет ограничения по выявлению сбалансированных транслокаций.

Дерматоглифический метод тоже предложен Гальтоном

Метод помогает в диагностике наследственных синдромов

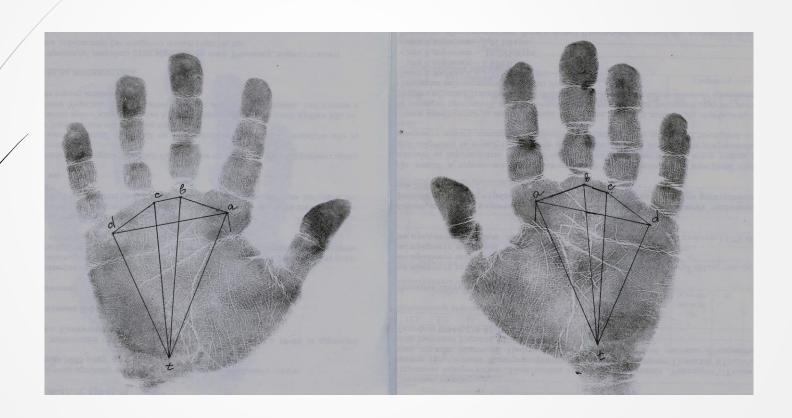
Дерматоглифический метод

(derma – кожа, gliphe – рисовать) изучает рельеф кожи на пальцах, ладонях и подошвенных поверхностях и основные сгибательные линии ладоней и подошв


- В отличие от других частей тела здесь имеются эпидермальные выступы гребни, которые образуют сложные узоры. Еще в древнем в Китае и Индии обратили внимание на то, что рисунки кожных узоров на пальцах и ладонях строго индивидуальны, и пользовались отпечатками пальцев вместо подписи.
- ➤ На Земле нет двух людей с одинаковыми рисунками на пальцах, кроме МБ у которых % конкордантности составляет 98%.

Дерматоглифика как метод генетического анализа был предложен в 1961 году Камингс и Мидло, а в 1967 году после внесения дополнений и изменений был унифицирован на Лондонском международном симпозиуме по дерматоглифике.

В 1982 году Ф. Гальтон предложил классификацию узорных типов, позволившую использовать этот метод для идентификации личности в криминалистике, судебной медицине, при определении зиготности близнецов, в антропологии.


Три основных вида пальцевых узоров

Американский генетик Райф (Rife DC) констатировал, что нет другого количественного вариабельного признака у человека с такой высокой наследуемостью и отсутствием изменений при воздействии постнатальных факторов... менее подчиненного колебанию в частотах, вследствие генетического дрейфа... т.е. обладающего уникальными свойствами

Дерматоглифические оттиски рук

Ключевые свойства дерматоглифики:

- обеспечение простого измерения качественных и количественных биологических признаков, отражающих размер и форму волярных подушечек плода;
- сформировавшиеся признаки дерматоглифики не изменяются при дальнейшем росте и развитии плода, ребенка и взрослого человека;
- дерматоглифика включает в себя наиболее наследуемые характеристики и одновременно отражает эффекты пола, расы, генных мутаций, хромосомных дефектов и тератогенных воздействий;

Ключевые свойства дерматоглифики:

- волярные складки тесно взаимосвязаны в развитии с подлежащими суставами.
- дерматоглифика может отражать нарушения пренатального развития при отсутствии других клинических симптомов этого нарушения;
- у дерматоглифика обеспечивает измерение соматической симметрии или гемидистрофии ранних стадий развития эмбриона и плода;
- волярные складки тесно взаимосвязаны в развитии с подлежащими суставами.

Ключевые свойства дерматоглифики:

- При некоторых наследственных болезнях и нарушениях в хромосомной системе человека изменяется наследование в структуре кожного рельефа пальцев, ладоней и стоп, отражаясь на фенотипе дерматоглифического комплекса человека.
- ▶ В ряде случаев обнаруженные изменения можно использовать в качестве дополнительных диагностических или прогностических критериев, а также при медикогенетическом консультировании.

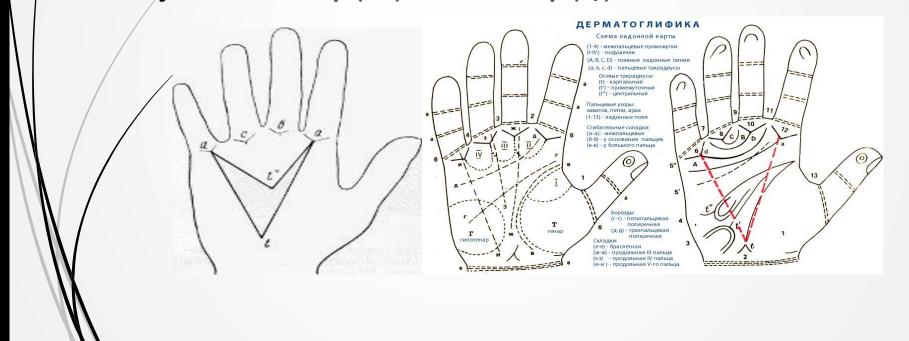
Формирование гребешковой кожи

- Процесс происходит в 3-5, 3-6 месяцев внутриутробного развития человека.
- Становление папиллярного рельефа кожи в филогенезе и формирование его в онтогенезе человека осуществляется в общем русле развития гребешковой кожи как целостного тактильного органа.

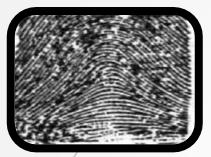
▶ Подготовительный этап характеризуется становлением компетенции к гребнеобразованию, подготовкой фона, накоплением соотвествующих индукторов и репрессоров, которые необходимы для «запуска» генов, детерминирующих гребнеобразование и формирование папиллярных рисунков.

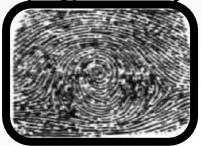
Этот этап длится с конца 8-й до начала 10-й недели эмбриогенеза.

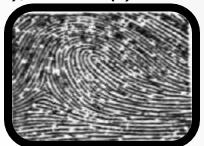
Этап гребнеобразования и формирования типов папиллярных узоров – на 10-11-й неделе эмбрионального развития «срабатывают» гены гребешковой кожи, которые «запускают» серию последовательных морфогенетических процессов формирования специфических деталей гребешковой кожи, в том числе и поверхностного рельефа.


Этап длится от 22-24-й недели внутриутробного развития плода, рельеф кожи достигает дефинитивной зрелости.

- Таким образом, к рождению ребенка его гребешковая кожа готова к тактильным восприятиям.
- ▶ Закладка папиллярных гребешков и формирование узоров различных конфигураций детерминировано различными генными системами: гребнеобразование генами гребешковой кожи fs (friction skin), а формирование узоров генами систем A,L,W. Действие генов friction skin обособленно, так как большая часть ладони и стопы человека занята папиллярными линиями, не образующими определенного рисунка.
- ➤ Тип и ориентация узора с возрастом не меняется. Не меняется и такой количественный показатель как гребневой счет (локальный и тотальный).


Диагностические критерии разработаны для таких заболеваний, как:


- синдромы Шерешевского-Тернера, Клайнфельтера, Дауна, синдром Рубинштейна-Тейби и де Ланге, которые сопровождаются врожденными пороками головного мозга (летальные формы патологии плода неуточненной этиологии, синдромальные формы задержки внутриутробного развития, соматическая асимметрия, хромосомный мозаицизм, синдромы "протяженного гена" (contiguous gene syndromes),
- врожденные дефекты конечностей, синдромальные формы врожденных дефектов неуточненной этиологии, задержки психомоторного развития или олигофрении,
- акродисплазии, эктодермальные дисплазии, дисплазии соединительной ткани, аномалии пола, дисплазии дермальных гребней;
- при влиянии тератогенных воздействий;
- влиянии ряда неинфекционных болезней: ГБ, ЗПР у мальчиков и девочек, гиперандрогении у девушек, ГСПП у мальчиков, ревматических заболеваний (ЮРА, ЮХА, РеА), язвенной болезни.


Ладонный рельеф человека сложный, различают 14 полей и 11 подушечек, которые размещены на полях; 5 подушечек расположены на концевых фалангах, 4 - напротив межпальцевых промежутков (межпальцевые подушечки); выделяют 2 ладонные подушечки — тенар (Th/I) и гипотенар (Hy).

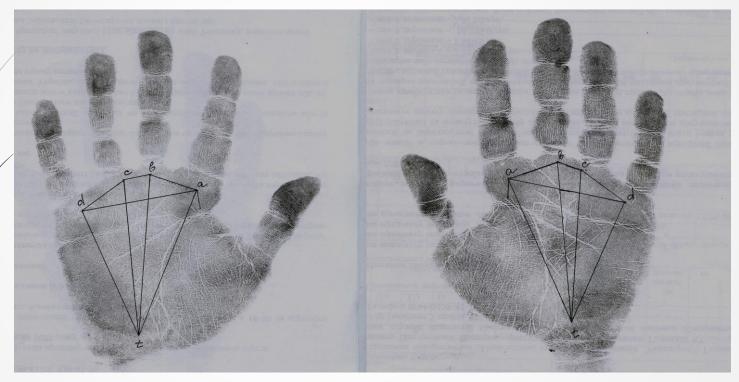
На дистальных фалангах пальцев рук выделяются рисунки 3 основных конфигураций – дуги (A), петли (L) и завитки (W).

По ориентации узора на поверхности пальцевой подушечки различат рисунки

- ульнарные (U),
- радиальные (R)
- и симметричные (S).

Многообразные узоры регистрируются на ладони (петли, завитки, сочетанные узоры, спирали).

Степень сложности узоров


Принцип метода

Заключается в получении оттиска пальцев, ладоней и подошв у исследуемых лиц методом типографской краски, так он дает четкие отпечатки, которые сохраняются десятки лет.

Для получения отпечатков необходимы: стекло или зеркало, резиновый валик, типографская краска, стеклянная палочка, бумага. На пальцевых и ладонных подушечках кожные гребешки идут тремя потоками, точки встречи 3-х потоков образуют трирадиусы или дельты. На каждой из 4-х межпальцевых подушечках есть трирадиусы, которые обозначаются малыми буквами латинского алфавита (a, b, c, d), начиная от указательного пальца и заканчивая мизинцем, от этих трирадиусов идут главные ладонные линии (A, B, C, D), которые заканчиваются в различных полях.

Кроме пальцевых и межпальцевых трирадиусов на ладонях есть и осевые трирадиусы (t).

Дерматоглифические оттиски рук

> Завитки (W) -

- ▶ обычный узор, чаще локализуется на 1-ом и 4-ом пальце. Очень редко у пациента встречаются и завитки и дуги (конкурирующие узоры), что является диагностичным признаком синдромов трисомии 8 мозаицизма и трисомии 13. Частота завитков снижена при синдроме XXУ.
- ➤ Повышенная частота завитков или завитков увеличенного размера обнаруживается при следующих заболеваниях: 18q-, 9p-, 5p-, артрогрипоз, камптодактилия Tel-Hashomer, синдром Ларсена, синдром Фримена-Шелдона, микростомия, синдром Холт-Орама, трихо-рино-фалангеальный синдром 1 типа, оро-фацио-дигитальный синдром, синдром краснухи (эмбриопатия), возможно цитомегаловирусная эмбриопатия, синдром Смита-Лемли-Опитца.
- ➤ Преобладание завитковых узоров отмечается при акантолитическом дискератическом дерматозе, семейном гингивальном фиброматозе, при варианте синдрома cutis laxa (синдром эластоза-лепречаунизма), синдроме Вильямса и синдроме "маски Кабуки".
- Ряд авторов считают преобладание завитков как биологический маркер неоплазий: рака молочной железы, семейных неоплазий, нейрофиброматоза и лейкоза у детей.

Ульнарные петли (L^U)

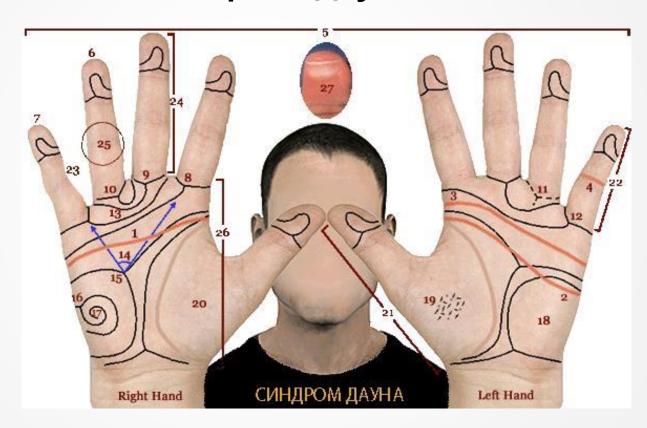
Ульнарные петли – (L^U) - обычный узор, редко диагностичен.

Однако при синдроме Дауна (фенотип 10 петель) и синдроме Клайнфельтера частота ульнарных петель отчетливо повышена.

Радиальные петли (LR)

- относительно необычны. Имеют четко выраженную тенденцию к локализации на указательном пальце для всех популяций и редкую частоту встречаемости на 3-ем и 4-ом пальцах, исключительно редки на мизинцах.
- Наличие единственной радиальной петли на мизинце свидетельствует о наличии редкой врожденной патологии.
- Локализация L^R на 3-5 пальцах может свидетельствовать в пользу следующих диагнозов: синдромы Дауна, де Ланге, 3р-, триплоидии, фрагильной X, метафизарной дисплазии, TAR синдрома.
- При брахидактилии и трехфаланговом первом пальце кисти отчетливо повышена частота радиальных петель.

Дуги (А)


Дуги (А)


- Дуги (А) редко встречаются у белых мужчин, чаще у женщин и африканцев.
- ▶ В некоторых семьях дуги регистрируются часто и могут отражать эффект аутосомно-доминантного гена.
- ➤ Наиболее часто дуга отмечается на указательном пальце и частота ее встречаемости уменьшается в ульнарном направлении с самым низким процентом на мизинце.

Дуги (А)

- ➤ Безотносительно причины *дуги* указывают на гипоплазию терминальных фаланг пальцев кисти. Наличие 5 и более дуг требует тщательного обследования пациента с целью исключения хромосомной патологии или тератогенного воздействия во время беременности (гидантоиновый синдром).
- Дуговые узоры часто встречаются при различных формах брахидактилии и акродисплазии.
- ▶ Преобладание дуг диагностический признак триплоидии, трисомии 18, трисомии 8 мозаицизма, тетрасомии 9, полисомии X, синдрома XXУ и XУУ, псевдогипопаратиреоидизма, синдромов Рубинштейна-Тейби.

Особенности дерматоглифики при синдроме Дауна

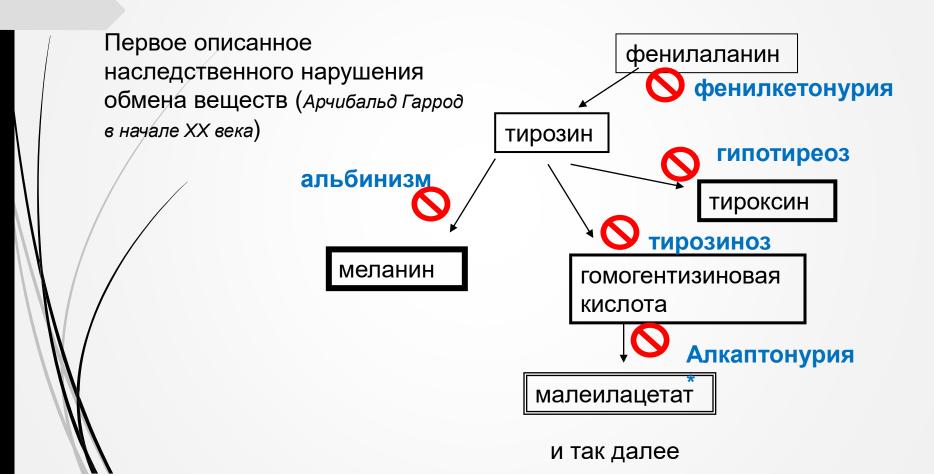
Варианты сгибательных складок

Особенности дерматоглифики при некоторых синдромах

- Синдром Эдвардса дуги на всех пальцах
- Синдром Дауна одна сгибательная складка
- Синдром Тернера все завитки на пальцах
- Синдром Рубинштейна-Тэйби сложный vзор на тенаре

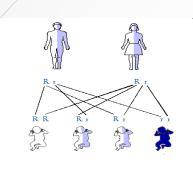
Биохимический метод

- Используется для изучения ферментопатий мутаций, нарушающих работу ферментов.
- ▶ В крови и моче больных выявляются определенные / химические соединения.

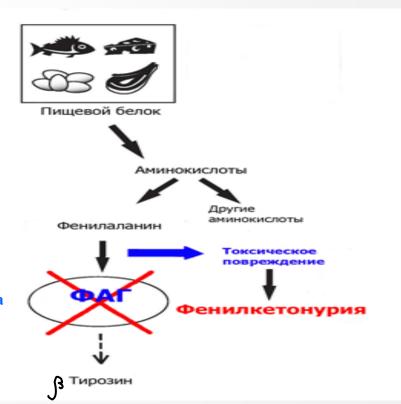

Биохимический метод

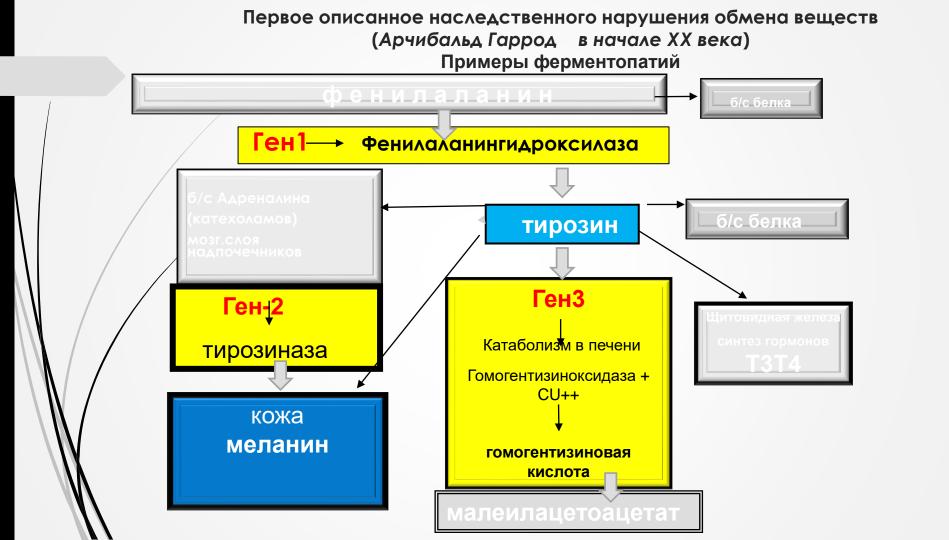
Суть метода:


- *изучение характера биохимических реакций в организме;
- * позволяет обнаружить нарушения в обмене веществ, вызванные мутациями генов.

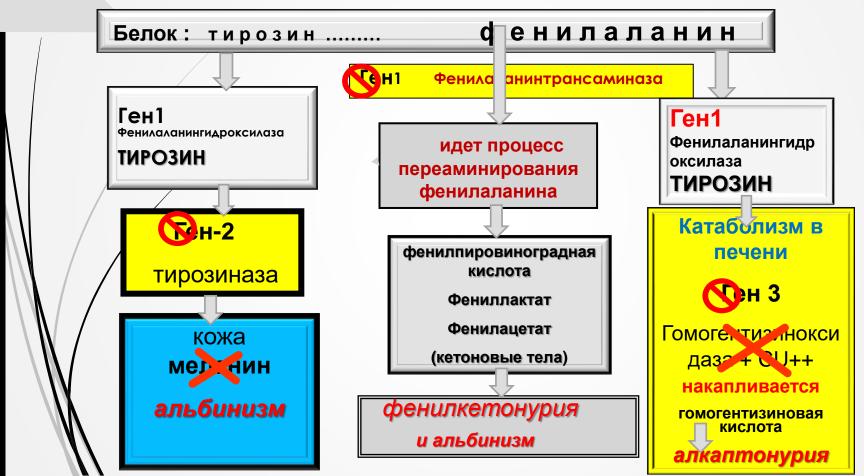

Примеры ферментопатий

Рассмотрим подробнее обмен фенилаланина и развитие фенилкетонурии (AR) ОМІМ 261600 и 261630




При фенилкетонурии (ФКУ) нарушено превращение фенилаланина в тирозин (классическая форма)

Аутосомнорецессивное наследование ФКУ


Фенилаланин гидроксилаза

Первое описанное наследственного нарушения обмена веществ (Арчибальд Гаррод в начале XX века)

Примеры ферментопатий

Дети с рождения должны соблюдать специальную диету с ограничением по фенилаланину

Неонатальный скрининг – «просеивание» всех младенцев на наличие биохимических дефектов

В настоящее время детей тестируют на выявление фенилкетонурии, муковисцидоза, врожденного гипотиреоза, адреногенитального синдрома и галактоземии

При выборе заболеваний для неонатального скрининга, в соответствии с рекомендациями ВОЗ, учитывались такие факторы, как тяжесть проявления заболеваний, частота распространения данных заболеваний, а также простота и достоверность применяемых методов диагностики, наличие доступных и эффективных средств лечения.

Молекулярно-генетические методы

- > ПЦР
- ➤ ПДРФ-анализ
- > Секвенирование
- Блот-гибридизация по Саузерну
- > Гибридизационные биочипы
- > Полногеномный анализ

Метод ПЦР был разработан в 1983 г. Кэрри Мюллисом.

В России получил развитие с 1989 г.

Полимеразная цепная реакция синтеза ДНК — это метод амплификации ДНК in vitro, с помощью которого в течение нескольких часов можно выделить и размножить определенный участок ДНК (размером от 80 до 3000 пар нуклеотидов (пн)) в миллиарды раз.

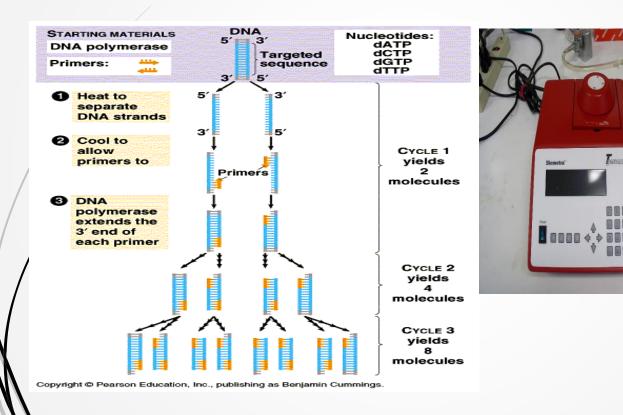
В основе метода ПЦР лежит репликация ДНК – комплементарное достраивание ДНК по матрице с помощью фермента ДНК-полимеразы.

Праймеры строго комплементарны правой и левой границам специфического фрагмента ДНК и синтез цепи протекает только между ними.

Основные этапы ПЦР:

ДНК диагностика выявляет генные мутации

- > подтверждающая, про подозрении на болезны
- > пресимптоматическая, до проявления болезни
- носительства, для выявления гетерозиготных носителей.
- > пренатальная дородовая.
- Принципиально различают прямую и косвенную ДНК диагностику моногенных наследственных болезней.

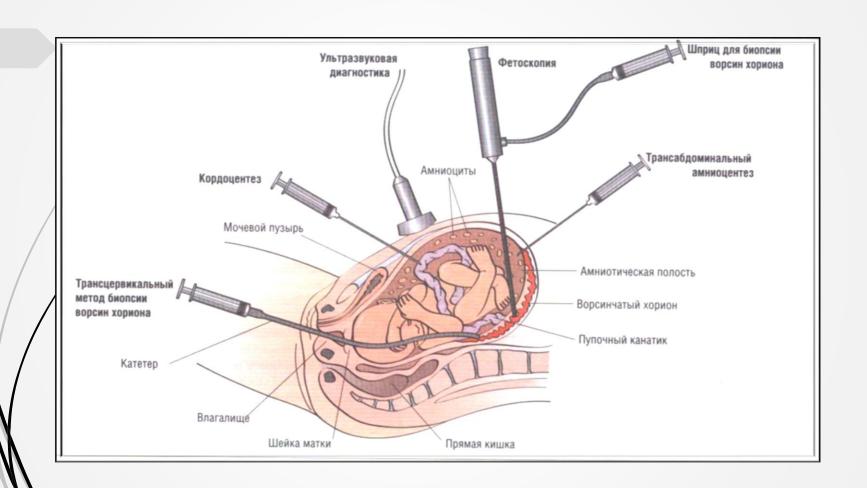

Прямая, когда ген и его мутации хорошо известны

Косвенная – по тесно сцепленному маркеру – рядом лежащему участку ДНК

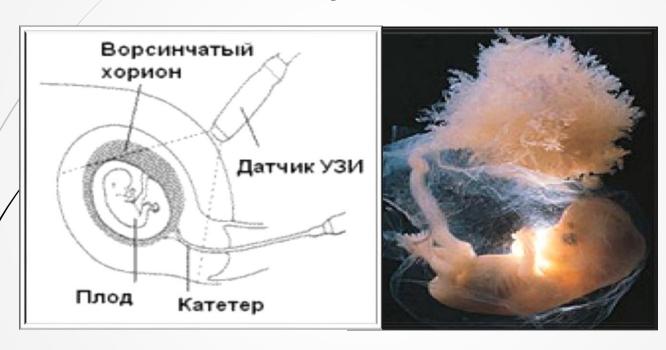
Некоторые термины, использующиеся при анализе ДНК

- Клонирование выделение гена и его размножение в составе хромосомы бактерии, фага или плазмиды
- Секвенирование определение последовательности участка ДНК
- Полимеразная цепная реакция, ПЦР метод получения большого числа копий участка ДНК
- Генная дактилоскопия выявление мелких вариаций в строении ДНК

Схема полимеразной цепной реакции и прибор для ее проведения

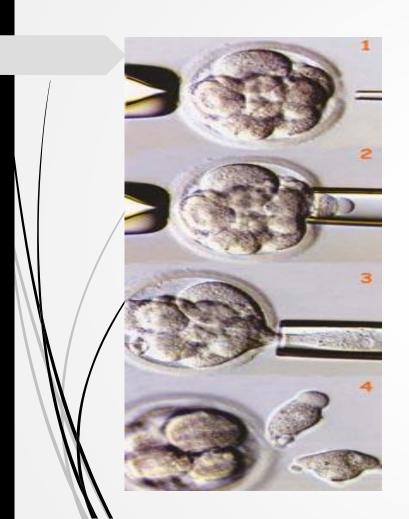


Пренатальная (дородовая) диагностика


Неинвазивная –УЗИ, кровь матери

Инвазивная -

- Использует для исследования ткани плода или зародышевых оболочек
- Использует цитогенетические, биохимические, ДНК методы
- Различают:
- предимплантационную диагностику;
- биопсию хориона (взятие ворсин хориона);
 - кордоцентез (взятие пуповинной крови);
- амниоцентез (взятие околоплодной жидкости);
- плацентацентез (ткани плаценты);
- биопсию тканей плода (например, кожи)



Биопсия хориона на 8 – 10 неделе беременности

Ультразвуковое исследование

Предимплантационная диагностика

При экстракорпоральном оплодотворении берутся бластомеры на стадии морулы и изучаются до имплантации зародыша

Медико-генетическое консультирование

Показания для МГК:

- Рождение в семье ребенка с врожденными уродствами и множественными пороками развития
- Умственная отсталость у ребенка
- Повторные спонтанные аборты, выкидыши, мертворождения у / женщины
- Выявленная патология у ребенка при проведении массовых скринирующих программ
- Близкородственные браки
- Сведения о неблагоприятном воздействии мутагенов или тератогенов на ранних сроках беременности

ГЕНЕТИЧЕСКИЕ ОСНОВЫ ПРОФИЛАКТИКИ НАСЛЕДСТВЕННОЙ ПАТОЛОГИИ

Общие положения

С профилактической точки зрения всю наследственную патологию целесообразно подразделить на 3 категории:

- вновь возникающие мутации (в первую очередь это анеуплоидии и тяжелые формы доминантных мутаций);
- унаследованные от предыдущих поколений (как генные, так и хромосомные);
- болезни с наследственной предрасположенностью. Различают 3 вида профилактики наследственной патологии.

Под первичной профилактикой понимают действия, которые должны предупредить зачатие больного ребенка: планирование деторождения и улучшение среды обитания человека.

Планирование деторождения включает 3 основные позиции:

- оптимальный репродуктивный возраст, который для женщин составляет 21-35 лет (более ранние или поздние беременности увеличивают вероятность рождения ребенка с врожденной патологией и хромосомными болезнями);
- отказ от деторождения в случаях высокого риска наследственной и врожденной патологии (при отсутствии надежных методов дородовой диагностики, лечения, адаптации и реабилитации больных);

• отказ от деторождения в браках с кровными родственниками и между двумя гетерозиготными носителями патологического гена.

Улучшение среды обитания человека должно быть направлено главным образом на предупреждение вновь возникающих мутаций путем жесткого контроля содержания мутагенов и тератогенов в окружающей среде. Это особенно важно для профилактики всей группы соматических генетических болезней (врожденные пороки развития, злокачественные новообразования, иммунодефицитные состояния и т.п.).

Вторичная профилактика

предполагает прерывание беременности при высокой вероятности заболевания плода или пренатально-диагностированной болезни. Прервать беременность можно только в установленные сроки и с согласия женщины. Основанием для элиминации эмбриона или плода является наследственная болезнь.

Прерывание беременности - не самое лучшее решение, но пока это единственный метод для вторичной профилактики большинства тяжелых и смертельных генетических дефектов.

Третичная профилактика

Под третичной профилактикой наследственной патологии понимают коррекцию проявления патологических генотипов. Это можно назвать и нормокопированием, поскольку при патологическом генотипе стремятся получить нормальный фенотип. Третичная профилактика проводится как при наследственных болезнях, так и (особенно часто) при болезнях с наследственной предрасположенностью. С ее помощью можно добиться полной нормализации функций или снижения выраженности патологического процесса. Для некоторых форм наследственной патологии она может совпадать с лечебными мероприятиями в общемедицинском смысле.

Предотвратить развитие наследственного заболевания (нормокопирование) можно внутриутробно или после рождения.

Для некоторых наследственных заболеваний возможно внутриутробное лечение (например, при резус-несовместимости, некоторых ацидуриях, галактоземии).

Развитие заболевания в настоящее время можно предотвратить путем коррекции (лечения) после рождения больного. Типичными примерами болезней, для которых эффективна третичная профилактика, могут быть галактоземия, фенилкетонурия, гипотиреоз (см. ниже) и др. Например, целиакия проявляется с началом прикорма ребенка. В основе болезни лежит непереносимость глютена. Исключение этого белка из пищи полностью гарантирует избавление от тяжелейшей патологии ЖКТ.